Electroencephalography for Enhanced Understanding of Consumer Preference
Current Journal of Applied Science and Technology,
Page 47-54
DOI:
10.9734/cjast/2020/v39i530545
Abstract
Conventional measurements used to study consumer response to food products may be subject to cognitive bias, as measurement data was consumer’s reported thoughts or through questionnaires. Therefore, for an unbiased approach electroencephalography (EEG), an electrophysiological method can provide implicit and extensive data. EEG uses electrical activity of brain to record and explain perceptive, attentive as well as emotional processes of consumer towards foods. The asymmetry of EEG signal between right and left hemispheres of anterior (frontal lobe) or posterior (parietal and occipital lobe) parts of brain can be used to determine acceptability of stimuli in a stimulated person. The accurate measurement through EEG enables marketers to compare consumer response to different marketing stimuli and impact moments associated with particular product or brand for better positioning of product in market.
Keywords:
- Electroencephalography
- EEG
- neuromarketing
- neuroscientific technique
- human brain
- encephalography
- cortex
- postsynaptic and left hemisphere
How to Cite
References
DOI: 10.1016/j.tifs.2017.09.006
Gani MO, Reza SMS, Rabi RI, Reza, SMS.. Neuromarketing : Methodologies of marketing science. International Journal of Business and Management Study. 2015;2(2): 294-298.
DOI: 10.15224/ 978-1-63248-071-2-38
Klincekova S. Neuromarketing - research and prediction of the future. International Journal of Management Science and Business Administration. 2016; 2(2): 53-57.
DOI:10.18775/ijmsba.1849-5664-5419.2014.22.1006
McClure SM, Li J, Tomlin D, Cypert KS, Montague LM, Montague PR. Neural correlates of behavioral preference for culturally familiar drinks. Neuron. 2004; 44(2): 379-387.
DOI: 10.1016/j.neuron.2004.09.019
Christopher DeCharms R. Applications of real-time fMRI. Nature Reviews Neuroscience. 2008;9(9):720–729.
DOI: 10.1038/nrn2414
Wang J, Zuo X, He Y. Graph-based network analysis of resting-state functional MRI. Frontiers in Systems Neuroscience. 2010;1–14.
DOI: 10.3389/fnsys.2010.00016
Hsu M. Neuromarketing : Inside the mind of the consumer. California Management Review. 2017; 59(4): 5-22.
DOI: 10.1177/0008125617720208
Mandelkern MA. Nuclear techniques for medical imaging: Positron emission tomography. Annual Review of Nuclear and Particle Science. 1995;45(1): 205–254.
DOI: 10.1146/annurev.nucl.45.1.205
Makhortykh SA, Semechkin RA. Study of magnetic field of the brain in Parkinson’s disease. Bulletin of Experimental Biology and Medicine. 2009;147(3):375–377.
DOI: 10.1007/s10517-009-0512-4
Eccles J. The synapse. Scientific American. 1965;212(1):56-69.
Hakim A, Levy DJ. A gateway to consumers’ minds: Achievements, caveats, and prospects of electroencephalography-based prediction in neuromarketing. Wiley Interdisciplinary Reviews: Cognitive Science. 2019;10(2):1–21.
DOI: 10.1002/wcs.1485
Songsamoe S, Saengwong-ngam R, Koomhin P, Matan N. Understanding consumer physiological and emotional responses to food products using Electroencephalography (EEG). Trends in Food Science & Technology. 2019;93: 167–173.
DOI: 10.1016/j.tifs.2019.09.018
Morin C. Neuromarketing: The new science of consumer behavior. Society. 2011; 48(2): 131-135.
DOI: 10.1007/s12115-010-9408-1
Viejo GC, Fuentes S, Howell K, Torrico DD, Dunshea FR. Integration of non-invasive biometrics with sensory analysis techniques to assess acceptability of beer by consumers. Physiology and Behavior. 2019; 200: 139-147.
DOI: 10.1016/j.physbeh.2018.02.051
Ariely D, Berns GS. Neuromarketing: The hope and hype of neuroimaging in business. Nature Reviews Neuroscience. 2010;11(4):284–292.
DOI: 10.1038/nrn2795
Stasi A, Songa G, Mauri M, Ciceri A, Diotallevi F, Nardone G, Russo, V. Neuromarketing empirical approaches and food choice: A systematic review. Food Research International. 2018; 108: 650-664.
DOI: 10.1016/j.foodres.2017.11.049
Prinzel LJ, Parasuraman R, Freeman FG, Scerbo MW, Mikulka PJ, Pope AT. Three experiments examining the use of electroencephalogram, event-related potentials and heart-rate variability for real-time human-centered adaptive automation design. In (Tech Report NASA TP-2003-212442); 2003.
Abhang P, Gawali B. Correlation of EEG images and speech signals for emotion analysis. British Journal of Applied Science & Technology. 2015;10(5):1–13.
DOI: 10.9734/bjast/2015/19000
Horska E, Bercik J, Krasnodebski A, Matysik-Pejas R, Bakayova H. Innovative approaches to examining consumer preferences when choosing wines. Agricultural Economics (Czech Republic). 2016;62(3):124–133.
DOI: 10.17221/290/2015-AGRICECON
Davidson RJ. Anterior electrophysiological asymmetries, emotion and depression: Conceptual and methodological conundrums. Psychophysiology. 1998; 35(5):607–614.
DOI: 10.1017/S0048577298000134
Davidson RJ. What does the prefrontal cortex “do” in affect: Perspectives on frontal EEG asymmetry research. Biological Psychology. 2004;67(1–2):219–234.
DOI: 10.1016/j.biopsycho.2004.03.008
Harmon-Jones E, Gable PA, Peterson C K. The role of asymmetric frontal cortical activity in emotion-related phenomena: A review and update. Biological Psychology. 2010; 84(3): 451-462.
DOI: 10.1016/j.biopsycho.2009.08.010
Rutherford HJV, Lindell AK. Thriving and surviving: Approach and avoidance motivation and lateralization. Emotion Review. 2011; 3(3): 333-343.
DOI: 10.1177/1754073911402392
Yagyu T, Kondakor I, Kochi K, Koenig T, Lehmann D, Kinoshita T, Hirota T, Yagyu T. Smell and taste of chewing gum affect frequency domain EEG source localizations. International Journal of Neuroscience. 1998;93(3–4):205–216.
DOI: 10.3109/00207459808986426
Kline JP, Blackhart GC, Woodward KM, Williams SR, Schwartz GER. Anterior electroencephalographic asymmetry changes in elderly women in response to a pleasant and an unpleasant odor. Biological Psychology. 2000;52(3):241–250.
DOI: 10.1016/S0301-0511(99)00046-0
Sanders C, Diego M, Fernandez M, Field T, Hernandez-Reif M, Roca A. EEG asymmetry responses to lavender and rosemary aromas in adults and infants. International Journal of Neuroscience. 2002;112(11):1305–1320.
DOI: 10.1080/00207450290158214
Toepel U, Bielser ML, Forde C, Martin N, Voirin A, le Coutre J, Murray MM, Hudry J. Brain dynamics of meal size selection in humans. NeuroImage. 2015;113:133–142.
DOI: 10.1016/j.neuroimage.2015.03.041
Andersen CA, Kring ML, Andersen RH, Larsen ON, Kjær TW, Kidmose U, Kidmose P. EEG discrimination of perceptually similar tastes. Journal of Neuroscience Research. 2019;97(3):241–252.
DOI: 10.1002/jnr.24281
Brown C, Randolph AB. The story of taste : Using EEGs and self-reports to understand consumer choice. The Kennesaw Journal of Undergraduate Research. 2012;2(1).
Lucchiari C, Pravettoni G. The effect of brand on EEG modulation: A study on mineralwater. Swiss Journal of Psychology. 2012;71(4):199–204.
DOI: 10.1024/1421-0185/a000088
Ravaja N, Somervuori O, Salminen M. Predicting purchase decision: The role of hemispheric asymmetry over the frontal cortex. Journal of Neuroscience, Psychology and Economics. 2013;6(1):1–13.
DOI: 10.1037/a0029949
Horská E, Berčík J. The influence of light on consumer behavior at the food market. Journal of Food Products Marketing. 2014; 20(4):429–440.
DOI: 10.1080/10454446.2013.838531
Van Bochove ME, Ketel E, Wischnewski M, Wegman J, Aarts E, De Jonge B, Medendorp WP, Schutter DJLG. Posterior resting state EEG asymmetries are associated with hedonic valuation of food. International Journal of Psychophysiology. 2016;110: 40–46.
DOI: 10.1016/j.ijpsycho.2016.10.006
Allen AP, Jacob TJC, Smith AP. Effects and after-effects of chewing gum on vigilance, heart rate, EEG and mood. Physiology and Behavior. 2014;133:244–251.
DOI: 10.1016/j.physbeh.2014.05.009
Murao S, Yoto A, Yokogoshi H. Effect of smelling green tea on mental status and EEG activity. International Journal of Affective Engineering. 2013;12(2):37–43.
DOI: 10.5057/ijae.12.37
Walsh AM, Duncan SE, Bell MA, O’Keefe SF, Gallagher DL. Integrating implicit and explicit emotional assessment of food quality and safety concerns. Food Quality and Preference. 2017;56:212–224.
DOI: 10.1016/j.foodqual.2016.11.002
-
Abstract View: 1316 times
PDF Download: 400 times