Effect of Centrifugal Force on a Porous Anisotropic Medium in Rotation, Saturated by a Non-Newtonian Fluid

Main Article Content

Vodounnou Edmond Claude
Ahouannou Clément
Semassou Guy Clarence
Sanya A. Emile
Dègan Gérard

Abstract

The present study deals with the linear stability of an anisotropic porous medium in rotation, saturated by a non-Newtonian fluid in a rectangular cavity heated on the side, subjected to the effect of the centrifugal force. The state of marginal stability is established by determining the critical Rayleigh number and the critical wave number. We have observed the effect of the parameters  and  of the anisotropy on the convection threshold.

Keywords:
Rotating anisotropic porous media, centrifugal force, linear stability, critical Rayleigh number, convection threshold.

Article Details

How to Cite
Edmond Claude, V., Clément, A., Guy Clarence, S., Emile, S. A., & Gérard, D. (2019). Effect of Centrifugal Force on a Porous Anisotropic Medium in Rotation, Saturated by a Non-Newtonian Fluid. Current Journal of Applied Science and Technology, 38(6), 1-10. https://doi.org/10.9734/cjast/2019/v38i630407
Section
Original Research Article

References

Jianhong Kang, Ceji Fu, Wenchang. Tan thermal convective instability of viscoelastic fluids in a rotating porous layer heated from below. Journal of Non-Newtonian Fluid Mechanics. 2011;93-101.
Available:www.elsevier.com/ locate/ jnnfm

Vadasz P, Govender S. Two-dimensional convection induced by gravity and centrifugal forces in a rotating porous layer far away from the axis of rotation. Int. J. Rotat. Mach. 2005;4(2):73–90.

Govender Saneshan. On the effect of anisotropy on the stability of convection in rotating porous media transport in porous media. 2006;64:413–422.
DOI: 10.1007/s11242-005-5479-7

Vadasz. Centrifugal generated free convection in a rotating porous box. International Journal of Heat and Mass Transfert. 1994;33(16):2399-2404.

Vadasz P, Saneshan Govender. Stability and stationary convection induced by gravity and centrifugal forces in a rotating porous layer distant from the axis of rotation. International Journal of Engineering Science. 2000;39:715-732.

Essoun M. Rotating Rayleigh-Bénard convection in the presence of helical force. Thèse de Doctorat IMSP Bénin; 2011.

Chandrasekhar S. Hydrodynamic and hydromagnetic stability. Calrendon Press, Oxford University; 1961.

Enock P, Tyvand A. Thermal convection in rotating porous layer. Z. Angew. Math. Phys. 1984;35:122–123.

Jong Jhy Jou, Jian Shuen Liaw. Transient thermal in a rotating porous medium confined between two rigid boundaries. Internationl communication, Heat and Mass transfert. 1987;14(0735-1933/97):147-153.

Dègan G, Vasseur P, Awanou NC. Anisotropy effects on non-Darcy natural convection from concentrated heat. International Journal of Heat and Mass Transfer. 2005;46(5):781-789.

Anoj Kumar, Bhadauria BS. Thermal instability in a rotating anisotropic porous layer saturated by a viscoelastic fluid. International Journal of Non-Linear Mechanics. 2011;47-56.
Available:www.elsevier.com/locate/nlm

Dègan G, Vasseur P. Influence of anisotropy on convection in porous media with nonuniform thermal gradient; 2003.

Govender S. Oscillatory convection induced by gravity and centrifugal forces in a rotating porous layer distant from the axis of rotation. International Journal of Engineering Science. 2002;41:539-545.

Nield DA, Bejan A. Convection in porous media. Springer Verlag, New York. Patil, P.R. and Vaidyanathan G. (1983) On Setting Up of; 1992.

Dègan G. Etude numerique et analytique de la convection naturelle en milieu poreux anisotrope. Thèse de Philosophae Doctor (Ph.D.), Ecole Polytechnique de Montréal (Canada); 1997.

Bejan Adrian. Convection Heat Transfer, A Wiley-Inter-science; 1984.